Sensitive Molecular Detection for Salmonella Enterica Serovars Typhimurium


Hasta Handayani Idrus
Sarwo Handayni
Fitriana Fitriana


Introduction: Salmonella infections contribute significantly to gastroenteritis cases, with the National Salmonella Reference Laboratory reporting 500 isolates in 2022. However, traditional culture-based methods for detecting Salmonella in samples can take 4 to 7 days to confirm a positive result, which poses health risks due to delayed detection. Given these health risks, swift and accurate detection methods are essential to minimize both false-positive and false-negative outcomes. Salmonella, a gram-negative bacterium within the Enterobacteriaceae family, demonstrates remarkable hardiness, surviving for several weeks in dry environments and months in water. Although most serotypes of Salmonella cause relatively mild gastroenteritis, some, particularly those transmitted from animals to humans, can lead to severe, life-threatening conditions

Methods: The qRT-PCR procedure involved the design of primers and probes targeting the same genes as the mPCR assay. These primer sets were reconfigured to generate smaller amplicons suitable for qRT-PCR systems

Results: qRT-PCR process, TaqMan probes were meticulously designed for specific target genes: FAM dye was employed to detect STM2745, Cy5 dye was used for STM4492, and Rox dye was utilized to detect. A standard curve was constructed using Typhimurium LT2 genomic DNA. Each sample underwent duplicate analysis, and Rotor-Gene software was employed to assign threshold values for each channel.

Conclusion: The effectiveness of our qPCR assay for the detection of Salmonella across a diverse array of matrices. Notably, our results unveiled distinct limits of detection for Salmonella in various samples. Specifically, a parallel vein, the deployment of a PCR assay, leveraging an immunomagnetic separation technique for DNA extraction, was studied by another group. While subsequent analysis of Salmonella detected via our assay may necessitate the full ISO SMT method for live culture isolation, this supplementary step can be seamlessly conducted alongside qRT-PCR.



1. Verbrugghe E, Vandenbroucke V, Dhaenens M, et al. T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions. Vet Res. 2012;43(1):22. doi:10.1186/1297-9716-43-22
2. Vinod N, Noh HB, Oh S, et al. A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges. Plos Pathog J. 2017;54(23):1-18. doi:10.1371/journal.pone.0185488
3. Park K il, Lee M ra, Oh T woo, Kim KY, Ma J yeul. Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo. BMC Complement Altern Med. 2017;17(1):1-9. doi:10.1186/s12906-017-2020-9
4. Idrus HH, Hatta M, Kasim VN, Achmad AF, Yusriani Mangarengi, Rijal S. Molecular Impact on High Motility Group Box-1 (HMGB-1) in Pamps and Damp. Indian J Public Heal Res Dev. 2019;10(8).
5. Idrus HH, Yuniati L, Fadilah AM, Mangarengi Y, Sodiqah Y. Efektifitas Ekstrak Buah Sawo Manila (Achras Zapota L.) terhadap Salmonella Typhi dengan Metode Agar Difus. UMI Med J. 2019;3(1):1-11. doi:10.33096/umj.v3i1.30
6. Handayani Idrus H, Hatta M. Biological Effects of Tumor Necrosis Factor Alpha (TNF-α) in Systemic Inflammation. Vol 03.
7. Sharma P, Pande V V., Moyle TS, McWhorter AR, Chousalkar KK. Correlating bacterial shedding with fecal corticosterone levels and serological responses from layer hens experimentally infected with Salmonella Typhimurium. Vet Res. 2017;48(1):1-11. doi:10.1186/s13567-017-0414-9
8. Wilson VR, Hermann GJ, Balows A. Preliminary report of a new system for typing Salmonella typhimurium in the United States. Appl Microbiol. 1971;21(4):774-776. doi:10.1128/aem.21.4.774-776.1971
9. Zhao X, Dai Q, Jia R, et al. Two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in Mice. Front Cell Infect Microbiol. 2017;7(SEP):1-19. doi:10.3389/fcimb.2017.00391
10. Ramachandran G, Aheto K, Shirtliff ME, Tennant SM. Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313. Pathog Dis. 2016;74(5):1-9. doi:10.1093/femspd/ftw049
11. Kiyuna T, Murakami T, Tome Y, et al. High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin- and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget. 2016;7(22):33046-33054. doi:10.18632/oncotarget.8848
12. Ramachandran G, Panda A, Higginson EE, et al. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection. PLoS Negl Trop Dis. 2017;11(8):1-14. doi:10.1371/journal.pntd.0005697
13. Baltazar M, Ngandjio A, Holt KE, et al. Multidrug-resistant Salmonella enteric serotype typhi, Gulf of Guinea Region, Africa. Emerg Infect Dis. 2015;21(4):655-659. doi:10.3201/eid2104.141355
14. McCarthy N, Jerry Reen F, Buckley JF, Frye JG, Fidelma Boyd E, Gilroy D. Sensitive and rapid molecular detection assays for salmonella enterica serovars typhimurium and heidelberg. J Food Prot. 2009;72(11):2350-2357. doi:10.4315/0362-028X-72.11.2350
15. Forest CG, Ferraro E, Sabbagh SC, Daigle F. Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. Microbiology. 2010;156(12):3689-3698. doi:10.1099/mic.0.041624-0