The Role of Reactive Oxygen Species in Muscle: Beneficial/Harmful

##plugins.themes.academic_pro.article.main##

Zulfahmidah Zulfahmidah
Imran Safei

Abstract

Introduction: Skeletal muscle produces moderate quantities of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), due to its contractile action, high oxygen consumption, and metabolic rate (RNS). Under normal physiological circumstances, the generation and removal of ROS/RNS are in dynamic equilibrium.


Content: The body reaches a condition of oxidative stress, however, when the oxidation products surpass the antioxidant defense capability. Increased oxidative stress has significant ramifications for the molecular, structural, and functional integrity of muscle. The release of reactive oxygen species (ROS) under pathological circumstances leads to cellular dysfunction and the progression of muscle disorders.


Conclusion: The antioxidants can put ROS in optimal concentrations to perform physiological signals in muscle. At appropriate concentrations, ROS and RNS can regulate intracellular signal transduction. Thus, moderate quantities of radicals are advantageous to muscle, but high doses of ROS are harmful. The aim of this review is to know about the role of ROS in muscle.

##plugins.themes.academic_pro.article.details##

References

1. Daenen K., Andries A., Mekahli D., Van Schepdael A., Jouret F., Bammens B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019;34:975–991. doi: 10.1007/s00467-018-4005-4. [PubMed] [CrossRef] [Google Scholar]
2. Trachootham D., Lu W., Ogasawara M.A., Rivera-dell Valle N., Huang P. Redox Regulation of Cell Survival. Antioxid. Redox Signal. 2008;10:1343–1374. doi: 10.1089/ars.2007.1957. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. 3 Proctor D.N., O’Brien P.C., Atkinson E.J., Nair K.S. Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am. J. Physiol. Metab. 1999;277:E489–E495. doi: 10.1152/ajpendo.1999.277.3.E489. [PubMed] [CrossRef] [Google Scholar]
4. Giordani L., He G.J., Negroni E., Sakai H., Law J.Y., Siu M.M., Wan R., Corneau A., Tajbakhsh S., Cheung T.H., et al. High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Mol. Cell. 2019;74:609–621.e6. doi: 10.1016/j.molcel.2019.02.026. [PubMed] [CrossRef] [Google Scholar]
5. Bachi A., Dalle-Donne I., Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem. Rev. 2012;113:596–698. doi: 10.1021/cr300073p. [PubMed] [CrossRef] [Google Scholar]
6. Nemes R, Koltai E, Taylor AW, Et All. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants 2018, 7(7), 85; https://doi.org/10.3390/antiox7070085
7. Di Meo S., Napolitano G., Venditti P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int. J. Mol. Sci. 2019;20:3024. doi: 10.3390/ijms20123024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Shadel G.S., Horvath T.L. Mitochondrial ROS Signaling in Organismal Homeostasis. Cell. 2015;163:560–569. doi: 10.1016/j.cell.2015.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Brand M.D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010;45:466–472. doi: 10.1016/j.exger.2010.01.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
10. Hernansanz-Agustín P., Enríquez J. Generation of Reactive Oxygen Species by Mitochondria. Antioxidants. 2021;10:415. doi: 10.3390/antiox10030415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11. Robb E.L., Hall A.R., Prime T.A., Eaton S., Szibor M., Viscomi C., James A.M., Murphy M.P. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 2018;293:9869–9879. doi: 10.1074/jbc.RA118.003647. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Crupi A.N., Nunnelee J.S., Taylor D.J., Thomas A., Vit J.-P., Riera C.E., Gottlieb R.A., Goodridge H.S. Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging. 2018;10:3327–3352. doi: 10.18632/aging.101643. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
13. Anderson E.J., Neufer P.D. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation. Am. J. Physiol. Physiol. 2006;290:C844–C851. doi: 10.1152/ajpcell.00402.2005. [PubMed] [CrossRef] [Google Scholar]
14. Ciuffoli V., Lena A.M., Gambacurta A., Melino G., Candi E. Myoblasts rely on TAp63 to control basal mitochondria respiration. Aging. 2018;10:3558–3573. doi: 10.18632/aging.101668. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
15. Le Moal E., Pialoux V., Juban G., Groussard C., Zouhal H., Chazaud B., Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid. Redox Signal. 2017;27:276–310. doi: 10.1089/ars.2016.6782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Harrison R. Structure and function of xanthine oxidoreductase: Where are we now? Free Radic. Biol. Med. 2002;33:774–797. doi: 10.1016/S0891-5849(02)00956-5. [PubMed] [CrossRef] [Google Scholar]
17. Judge A.R., Dodd S.L. Xanthine oxidase and activated neutrophils cause oxidative damage to skeletal muscle after contractile claudication. Am. J. Physiol. Heart Circ. Physiol. 2004;286:H252–H256. doi: 10.1152/ajpheart.00684.2003. [PubMed] [CrossRef] [Google Scholar]
18. Radák Z., Zhao Z., Koltai E., Ohno H., Atalay M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 2013;18:1208–1246. doi: 10.1089/ars.2011.4498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Kang C., Chung E., Diffee G., Ji L.L. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: Role of PGC-1α Exp. Gerontol. 2013;48:1343–1350. doi: 10.1016/j.exger.2013.08.004. [PubMed] [CrossRef] [Google Scholar]
20. Sriram S., Subramanian S., Sathiakumar D., Venkatesh R., Salerno M.S., McFarlane C.D., Kambadur R., Sharma M. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell. 2011;10:931–948. doi: 10.1111/j.1474-9726.2011.00734.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
21. Sriram S., Subramanian S., Juvvuna P.K., Ge X., Lokireddy S., McFarlane C.D., Wahli W., Kambadur R., Sharma M. Myostatin augments muscle-specific ring finger protein-1 expression through an NF-κB independent mechanism in SMAD3 null muscle. Mol. Endocrinol. 2014;28:317–330. doi: 10.1210/me.2013-1179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Zuo L., Christofi F.L., Wright V.P., Bao S., Clanton T.L. Lipoxygenase-dependent superoxide release in skeletal muscle. J. Appl. Physiol. 2004;97:661–668. doi: 10.1152/japplphysiol.00096.2004. [PubMed] [CrossRef] [Google Scholar]
23. Zampieri, S., Pietrangelo, L., Loefler, S., Fruhmann, H., Vogelauer, M., Burggraf, S., Pond, A., Grim-Stieger, M., Cvecka, J., Sedliak, M., Tirpáková, V., Mayr, W., Sarabon, N., Rossini, K., Barberi, L., De Rossi, M., Romanello, V., Boncompagni, S., Musarò, A., Sandri, M., Protasi, F., Carraro, U., Kern, H., 2015. Lifelong physical exercise delays age-associated skeletal muscle decline. J. Gerontol. − Ser. A Biol. Sci. Med. Sci. 70, 163–173. http://dx.doi.org/10.1093/gerona/glu006.
24. Lawler, J.M., Song, W., Demaree, S.R., 2003b. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic. Biol. Med. 35, 9–16. http://dx.doi.org/10.1016/S0891-5849(03)00186-2.
25. Lawler, J.M., Song, W., Kwak, H.B., 2006. Differential response of heat shock proteins to hindlimb unloading and reloading in the soleus. Muscle Nerve 33, 200–207. http:// dx.doi.org/10.1002/mus.20454.
26. Gomez-Cabrera, M.C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F.V., Sastre, J., Viña, J., 2008. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 87, 142–149. http://dx.doi.org/10.1016/S0162- 0908(08)79360-7.
27. Pedersen, B.K., Febbraio, M.A., 2008. Muscle as an endocrine organ: focus on muscle- derived interleukin-6. Physiol. Rev. 88, 1379–1406. http://dx.doi.org/10.1152/ physrev.90100.2007.
28. Radak, Z., Taylor, A.W., Ohno, H., Goto, S., 2001. Adaptation to exercise-induced oxi- dative stress: from muscle to brain. Exerc. Immunol. Rev. 7, 90–107.
29. Lee, S., Shin, H.S., Shireman, P.K., Vasilaki, A., Van Remmen, H., Csete, M.E., 2006. Glutathione-peroxidase-1 null muscle progenitor cells are globally defective. Free Radic. Biol. Med. 41, 1174–1184. http://dx.doi.org/10.1016/j.freeradbiomed.2006. 07.005.
30. Scicchitano, B.M., Faraldi, M., Musarò, A., 2015. The proteolytic systems of muscle wasting. Recent Adv. DNA Gene Seq. 9, 26–35. http://dx.doi.org/10.2174/ 2352092209999150911121502.